
System tests for Enterprise JavaBeans and Java based
Applications with TTCN-3

Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

Fraunhofer FOKUS, MOTION 2Technical University Berlin, Faculty IV,
Kaiserin-Augusta-Allee 31 Straße des 17. Juni 135
10589 Berlin, Germany 10623 Berlin, Germany
{guy-collins.ndem, schieferdecker, eichler, vouffo}@fokus.fraunhofer.de

http://www.fokus.fraunhofer.de/motion

Abstract. Nowadays the use of complex distributed systems increases rapidly
and the need for solid testing, too. Enterprise JavaBeans (EJB) is one of the
most used standards for developing distributed systems. The applications based
on EJB technology are secure, concurrent, transactional, etc. TTCN is in the
telecommunication domain a widely established and used test technology. In its
new version, TTCN-3 (Testing and Test Control Notation), it has a wider scope
and applicability. It cannot be used only for testing the conformance and
interoperability of communication protocols but also for testing the correct
behaviour of distributed systems and application. This paper describes the
language mapping from EJB/Java to TTCN-3 and an Eclipse based solution for
testing EJB/Java based applications with TTCN-3.

1 Introduction

Testing is a generally accepted approach to validate systems and system
components in their development and target environment. Assured quality of system
and system components is particularly important as the time-to-market becomes ever
shorter and the requirements on system functionality, reliability, availability, integrity
and performance further increase. A systematic approach to testing distributed
systems is essential, so that the requirements of the market can be fulfilled.

One of Java’s most important features is platform independence. Enterprise
JavaBeans (EJB [11][12]) is not just platform-independent; it is also implementation-
independent. The EJB has revolutionized the way we develop mission-critical
enterprise software. It combines server-side components with distributed object
technologies, asynchronous messaging, and Web services to simplify application
development. It automatically supports many of the requirements of business systems
such as security, resource pooling, persistency, concurrency, scalability, portability, or
transactional integrity.

TTCN-3 [1] is an implementation-independent test specification and
implementation technology, specifically developed to support the testing of static and
dynamic, local and distributed, sequential and parallel reactive systems. It is already

2 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

links into object, component and Web service technologies with the IDL to TTCN-3
[6], the XML to TTCN-3 mapping [8], and the upcoming C/C++ to TTCN-3 [9]
mapping. However, a mapping to enable the testing of EJB/Java-based applications is
missing. This is the target of this paper.

In this paper, we describe a “Three-Component” system test architecture approach
for testing dynamically EJB based applications with TTCN-3. The Loader component
is able to load SUTs from a given location. The Transformer component will analyze
the loaded SUTs and according to their functionalities, a TTCN-3 document object
model (TDOM [10]) containing each functionality and its associated test case will be
generated. This component is also able to generate TTCN-3 codes from the generated
TDOM. Finally the TestAdapter component is a bridge between TTCN-3 and SUT(s)
during the execution of test cases. TDOM enables testing of systems without the
necessity to see the associated TTCN-3 codes.

The paper is organized as follows. Section 2 respectively Section 3 addresses
TTCN-3 respectively EJB. Section 4 presents basic concepts of the combined use of
Java and TTCN-3. The deal with our implementation is discussed in Section 5.
Session 6 provides a concrete example and Section 7 summarizes the paper.

2 Testing and Test Control Notation (TTCN-3)

The TTCN-3 language was created due to the imperative necessity to have a
universally understood (specification and implementation) language syntax able to
describe test behaviours and test procedures. Its development was imposed by
industry and science to obtain a single test notation for all black-box and grey-box
testing needs. In contrast to earlier test technologies, TTCN-3 encourages the use of a
common methodology and style which leads to a simpler maintenance of test suites
and test systems. With the help of TTCN-3, the tester specifies the test suites at an
abstract level and focuses on the test logic to check a test purpose itself rather than on
the test system adaptation and execution details. A standardized language provides a
lot of advantages to both test suite providers and users.

TTCN-3 enables systematic, specification-based testing for various kinds of tests
including e.g. functional, scalability, load, interoperability, robustness, regression,
system and integration testing. It allows an easy and efficient description of complex
distributed test behaviours in terms of sequences, alternatives, and loops of stimuli
and responses. The test system can use a number of test components to perform test
procedures in parallel. TTCN-3 is characterized by a well-defined syntax and
operational semantics, which allow a precise and unambiguous test execution. The
task of describing dynamic and concurrent configurations is easy to perform. The
communication can be realized either synchronously or asynchronously. In order to
validate the data transmitted between the entities composing the test system, TTCN-3
supports the definition of templates with powerful matching mechanism. To validate
the described behaviours, a verdict handling mechanism is provided.

The types and values can be either described directly in TTCN-3 or can be
imported from other languages (e.g. ASN.1, XML schema, or IDL). Moreover in
TTCN-3, the parameterization of templates, functions, test cases, modules, etc. is
allowed. The selection of the test cases to be executed can be either controlled by the

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 3

user or can be described within the execution control construct. The external
configuration of a test suite through module parameters is possible.

3 Enterprise JavaBeans (EJB)

Enterprise JavaBeans provided by Sun Microsystems was first introduced as a
draft specification in late 1997. It has since then established itself as one of the most
important Java enterprise technologies. EJB is a standard server-side component
model for distributed business applications. It provides the server-side with the
Component Transaction Monitors (CTM) representing two technologies: traditional
transaction-processing (TP) monitors (such as CICS, TUXEDO, and Encina), and
distributed object services (such as CORBA, DCOM, and native Java RMI).
Combining the both technologies, CTMs provide a robust, component-based
environment that simplifies distributed development while automatically managing
the most complex aspects of enterprise computing, such as object brokering,
transaction management, security, persistence, and concurrency. In order to
implement entity and session enterprise beans, one needs to define the component
interfaces, a bean class and a primary key:

The Remote (Home) interface defines the bean’s business methods which can be
accessed from applications outside the EJB container. The Remote (Home) interface
is the most important element when testing EJB based application with TTCN-3. The
Local (Home) interface defines business methods that can be use by other beans in the
same EJB container. The Endpoint interface defines business methods that can be
accessed from outside the EJB container via SOAP. The Message interface defines
the methods by which messaging systems, such as JMS, can deliver messages to the
bean. The Bean class (Entity, Session) must have methods matching the signatures of
the methods defined in the remote, local, endpoint interfaces, and must have methods
corresponding to some of the methods in both remote and local home interfaces. The
Primary key is a class that provides a pointer into the database. Only entity beans
need a primary key.

4 Java to TTCN-3 Mapping

This section defines the mapping rules for Java to TTCN-3 to enable testing of
Java/EJB based applications. The following mapping rules are an initial step to a
Java-to-TTCN-3 mapping. The rules do not cover the whole Java Core Language, but
all parts needed for EJBs.

4 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

4.1 Lexical Convention
The lexical conventions of Java define comments, identifiers, keywords, and

literals conventions which are described below.

Comments. Comment definitions in TTCN-3 and Java are the same and
therefore, no convention for the mapping is necessary. Both Java and TTCN-3 are
using the pair “/*” and “/*” for comment blocks or “//” for end line comments.

Identifiers. Identifiers in Java and TTCN-3 consist of alphabetic, numeric and
underscore characters where the first character must be an alphabetic character and all
characters are significant. Both Java and TTCN-3 use case sensitive identifiers.
However Java supports overloading of identifiers according to the context in which
they are defined. There is no overloading of identifiers in TTCN-3 so that no
identifier name can be used more than once in a scope hierarchy. Hence, the
identifiers in TTCN-3 need to reflect the overloading situation in Java.

Keywords. It has to assured that no TTCN-3 keyword is used as an identifier in
the Java definition if a seamless mapping has to be guaranteed. For that, identifiers
are renamed by appending a special prefix or suffix in case of a conflict with
keywords in TTCN-3.

Literals. The definition of literals differs slightly between Java and TTCN-3 so
that some conversions to be made. The Table 1 gives the mapping for each literal
type.

Literal Group Literal Java Convention TTCN-3 Convention

long no “0” as first digit no “0” as first digit
integer no “0” as first digit no “0” as first digit
short no “0” as first digit no “0” as first digit
byte no “0” as first digit no “0” as first digit
octal “0” as first digit ‘FF96’O

Numeric

hexadecimal “0X” or “0x” as first digit ‘AB01D’H
float 1; 1.5f; 1.5F; 2e-5f; 2e-5F Floating
double 1d; 1D; 1.5; 2e-5

1.0; 1.5; 2E-5

boolean true, false true, false
char ‘c’ “c” Others
String “text” “test”

Table 1. Literal mapping

4.2 Mapping Java Names to TTCN-3 Names
In general, each Java name is mapped to an equivalent name in TTCN-3 (Java and

TTCN-3 are both case sensitive). However, there are some exceptions when the Java
name is not a legal identifier in TTCN-3.

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 5

Mapping packages to modules

We map Java package names to TTCN-3 modules. Each Java package becomes a
separate TTCN-3 module. Packages within packages will be mapped as new modules.
Therefore, a Java package a.b.c would turn to into a TTCN-3 module a_b_c and
a_b.c would be mapped to a__b.c.

Mapping Java names that clash with TTCN-3 keywords

For Java names that collide with TTCN-3 keywords, the Java names are mapped
to TTCN-3 by adding a leading “j” word. So the Java name oneway is mapped to
the TTCN-3 identifier j__oneway.

Mapping Java names with leading underscores

For Java names that have leading underscores, the leading underscore is replaced
with “j_”. So _fred is mapped to j_fred. An existing underscore in an identifer
is use as a separator and it is replaced by a double underscore. So a_b is mapped to
a__b. An existing leading “j_” is mapped to U006A (Unicode for “j”).

Mapping Java names with illegal TTCN-3 identifier characters

Given the current lack of support for Unicode in TTCN-3, we define a simple
name mangling scheme to support the mapping of Java identifiers to TTCN-3
identifiers. For Java identifiers that contain illegal TTCN-3 identifier characters such
as ‘$’ or “U” replaces Unicode characters outside of ASCII, any such illegal
characters followed by the 4 hexadecimal characters (in upper case) representing the
Unicode value. So, the Java name a$b is mapped to aU0024b and x\u03bCy is
mapped to xU03BCy.

Names for inner classes
In Java, the name of the inner class is composite name formed by concatenating the
name for the outer class, the dollar character “$”, and the name of the inner class.
When we are mapping names for Java inner classes, we can refer to the mapping for
illegal identifiers. The corrections for illegal TTCN-3 identifiers described above are
then applied. For example, an inner class Fred inside a class Bert will be mapped
to a TTCN-3 name of BertU0024Fred.

Overloaded methods names
If a Java method’s names are not overloaded, then the same method’s names are used
in TTCN-3 as were used in Java. Given the absence of overloaded methods in current
TTCN-3, we define a simple name mangling for overloaded methods. Note that a
method may be uniquely defined in a base interface (and therefore its name will not
be mangled in that interface) and then be overloaded in a derived interface (in which
case the name will be mangled in the derived interface). For overloaded Java
methods, the mangled TTCN-3 name is formed by taking the Java method name and
then appending each of the qualified TTCN-3 types of the arguments separated by
two underscores, followed by “_signature”. For example, the two overloaded Java
methods: hello() is mapped to hello_signature() and hello(int x,

6 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

a.b.c y, long z) is mapped to hello__int__c__long_signature(in
JavaInt x, in a_b_c y, in JavaLong z).

Methods names that collides with other names
In some cases, applying these rules for name mappings can generate TTCN-3 with
collisions between method names and constant or field names. This is because Java
constants and fields can have the same names as methods, but TTCN-3 constants and
fields cannot. The following rules are used to avoid such name collisions in TTCN-3:
Method, constant or field names are mapped unchanged (subject to other mangling
rules). For example, if a Java class has both a constant fb and a method fb(), the
TTCN-3 method is called fb_signature (if it is mapped) and the TTCN-3
constant is called fb (whether or not the method fb is mapped).

Container names that clash with their members
In some cases, applying these rules for name mappings would generate TTCN-3 with
collisions between a container name and members of the container. This is because a
Java member can have the same name as its container, but TTCN-3 members cannot.
The following rules are used to avoid such name collisions in TTCN-3: Container
names are mapped unchanged (subject to other mangling rules). Java method,
constant, or field names whose mapped name collides with the mapped name of their
Java container are mapped according the general mapping rules. For example, if a
remote Java interface Foo has a method foo, the TTCN-3 interface is called Foo
and the TTCN-3 operation is called foo_signature.

Names that would cause TTCN-3 collisions
If the name mappings defined in this specification would produce TTCN-3 method,
constant, field, or attribute names that are not unique within their declared scope, this
is treated as an error. For example, if a Java remote interface has methods foo(),
foo(int x), and foo__int(), the corresponding TTCN-3 names would be
foo_signature, foo__long_signature, and
fooU002Dlong_signature (normally foo__int_signature), which
is legal TTCN-3.

4.3 Mapping Java Types to TTCN-3 Types
Java provides type declarations for values and constants and basic data types,
constructor types and complex types. Their mapping to TTCN-3 will be shown in the
following subsections. A construct for naming data types and defining new types by
using the keyword class is provided by Java. This can be done under TTCN-3 via the
keyword type, too.

Mapping for Primitive Types
Mapping Java primitive data types to TTCN-3 data types is straight forward. It is
necessary to map each Java primitive type to a new appropriate one TTCN-3 in order
to ensure their reconstruction in Java during the execution of tests. This notion
introduces the JavaObject@TTCN-3 concept, which consists to transport the Java

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 7

Objects in TTCN-3 and to manipulate them as well as in Java. Table 2 shows
mapping of those primitive types and their derived types in TTCN-3.

Java Type TTCN-3 TTCN-3(derived)
void - -
Boolean, boolean boolean -
Character, char char -
Byte, byte JavaByte type integer JavaByte …;

Short, short JavaShort type integer JavaShort …;

Integer, int JavaInt type integer JavaInt …;

Long, long JavaLong type integer JavaLong …;

Float, float float type float JavaDouble …;
Double, double JavaDouble type float JavaDouble …;

Table 2. Java primitive Type to TTCN-3

Mapping for java.lang.String and java.lang.Object
As in many programming language, a String is a sequence of char. Therefore,
java.lang.String is mapped to universal charstring in TTCN-3 and
java.lang.Object is to a record see Table 3 for more information.

Java Type TTCN-3 TTCN-3(derived)
java.lang.String universal

charstring
��

java.lang.Object JavaObject type record JavaObject {
 universal charstring name
}

Table 3. Mapping for java.lang.String and java.lang.Object

Mapping Java Classes and inner Classes
A Java class represents objects and their properties. Therefore, a class is mapped
according its complexity to a record. When we are testing EJB, a class or inner class
is only mapped if it’s instantiated. The fields of class are carried to TTCN-3 according
their accessibility i.e. a final field is transported only if it is public and a private field
is carried only if the delegated get and set methods are implemented

8 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

Java TTCN-3

package alpha.beta
class Jet{
private String name;
public double height;
private Jumbo jbo;
…
private class Jumbo{
 public float value;
 }
}

type record
alpha_beta_JetU0024Jumbo {
 float value;
}
type record alpha_beta_Jet{
universal charstring name,
JavaDouble height,
alpha_beta_JetU0024Jumbo jbo
}

Mapping for Arrays and Lists
Java array can be mapped directly to the TTCN-3 array type because they provide the
same functionality. However the dimension of the array is unknown during the
transformation from Java to TTCN-3 and therefore we mapped a Java array to a
TTCN-3 record of. The List types are Java elements which are (sub)classes having
(sub)interfaces of java.util.Iterator or java.util.Map such as Vector, List,
ArraList, Hashtable, etc. Lists are mapped to record of in TTCN-3 (see below for
more details).

Java TTCN-3
Book[] ; type record Book{…}

type record of Book Book_ARRAY;
Book[][]; type record of Book innerArray;

type record of innerArray Book_ARRAY;
java.util.Vector ; type record of JavaObject

java_util_Vector;
java.util.HashTable; type record of JavaObject

java_util_Hashtable;

Mapping for Java Exceptions
In Java, exceptions are used in conjunction with operations to handle exceptional
conditions during an operation call. Thus, a special struct-like exception type is
provided which has to be associated with each operation that can trigger this
exception. Java allows subclassing of exception types and the Java types system is
used to distinguish different flavors of exceptions at run time. It is very common for a
Java Interface to say it raises a fairly generic exception (such as java.io.IOException)
but for implementations to throw more specific subtypes (such as
java.io.InterruptedIOException) and for clients to use instanceof operator to check for
specific subtypes. TTCN-3 also supports the use of exceptions with procedure calls by
binding it to signature definitions. However, it provides no special exception type.
Hence, exceptions are defined by using type record.
A definition of an exception is shown in the following example. The use of exception
binding in signature definitions and exception catching is shown in the context of
operation declaration.

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 9

Java TTCN-3

type record StackTraceElement {
 universal charstring className,
 universal charstring methodName,
 JavaInt lineNumber };
type record of StackTraceElement
StackTrace;

Exception

type record Exception {
 universal charstring reason,
 StackTrace stackTrace };

Mapping for Java Package
A Java package is mapped to a TTCN-3 Module

Java TTCN-3
package alpha.bravo; module alpha_bravo { … }
package alpha.bravo.fly; module alpha_bravo_fly { … }

Mapping for Java Interfaces
Interfaces describe objects with all their access methods by using operations and
parameters. Additionally, interfaces can contain local type definitions like exceptions
and constants which can be used by its operations and attributes. A mapping for
interfaces should provide a similar scoping and grouping mechanism as well as an
appropriate handling under TTCN-3 as in Java. Because of lacking an object model in
TTCN interfaces have to be flattened and all interface definitions are stored in one
group. Hence, import of single interface definitions from other package via the
importing group statement is possible. Therefore, a Java interface is mapped to group,
port, template and component.

Java TTCN-3

Interface identifier
{ body }

group identifierInterface {
 ... body definitions ...
 type port identifier
 signature { ... }
 type template identifierObject;
}

Mapping for Java Methods
Operations (methods) are the main part of interface definitions in Java and are used,
for instance, in the Java scheme as procedures (or functions) which can be called by
clients. Methods under Java consist of invocation semantics, return results, identifier,
parameter list, optional raise expression. The matching of all this parts to TTCN-3
will be described now.

10 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

Java TTCN-3

class Foo{
boolean isMax(int a,
int b) throw
java_rmi_exception;
}

type record java_rmi_exception{
 universal charstring reason,
 StackTrace stackTrace
};
Foo__isMax_signature(in JavaInt a, in
JavaInt b)
return boolean
exception(java_rmi_exception);

Mapping for Non-conforming Classes and interfaces
Non-conforming classes or interfaces are the data types which have not been
mentioned above. Those types are mapped to JavaObject in TTCN-3 and therefore
java.io.File is mapped to type JavaObject java_io_File.

5 EJB System tests architecture

This section describes our implemented approach for testing EJB based applications
with TTCN-3. Fig.1 shows the system test environment, which is described in the
following:
− SUTs: EJB applications are Java based and therefore they can be provided as

jarFiles, zipFiles, or classFolders.
− SUTLoader is one of the components described above. The SUTLoader able load

more than one SUT once.
− SUTParser is the transformer component. It uses the mapping rules to generate

dynamic test cases.
− TDomUnparser is a part of the SUTParser. It’s able to transform and save a

generated TDom to TTCN-3 codes.
− TestAdapter is a bridge between TTCN-3 and SUTs [3][4].

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 11

Fig. 1. System test architecture

5.1 SUTLoader (SL)
The SUTLoader is based on Java Class loading technology and is able load more than
one SUT at once. This singleton application is the only loader component used during
the transformation from Java-to-TTCN-3 because it also provides the functionalities
of the Classic Java Classloader (ClassLoader and URLClassLoader). The SUTs
loading mechanism is describe as follows:
− The default SUTs location is checked while the loader is initializing and its

contents is loaded. The loader provides methods and functionalities to loads more
SUTs after the initialization.

− The SUTs are sorted in four different lists: “All” (to test Java), “Only interfaces”
(to test concrete Java’s functionalities), “Only EJB interfaces” (to test All EJB
including the base functionalities), “Only EJB Remote interfaces” (to test EJB
based applications).

− According the test mode, SUTs are compressed in a SUTHastable containing more
SUTPackages and passed to the transformer.

− Each SUTPackage contains the classes of the same Java package.

5.2 SUTParser (SP)
The SP can receive SUTs as a Java Hashtable, a SUTHashtable, a SUTPackage, or a
Java Class. The base SUT entity is the SUTPackage, because the top-level unit in
TTCN-3 is the module. A Java Hashtable is automatically converted to SUTHastable
and each SUTPackage of a SUTHastable will be used to define a new TTCN-3
module. A Java class will be converted to a SUTPackage with one class. Fig.2 shows
the internal structure of the Parser.

12 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

Fig. 2. Structure of the SUTParser

− TTCN3Module is the top-level unit of the parser, it receives a SUT module as

SUTPackage, and each of its elements defines a new TTCN3Group.
− TTCN3Group is the representation of a Java class or interface, each methods of a

class is used to define a TTCN3Method.
− TTCN3Method is mapped to a signature in TTCN-3; each can have parameters, a

return value, and can throw exceptions. Each parameter type or return type defines
a TTCN3ClassObject, and each exception type is used defines a TTCN3Exception

− TTCN3ClassObject can be simple (primitive) or complex. According to its
complexity, a TTCN3ClassObject can be a classic or a list type.

The SUTParser provides also elements such as, TTCN3Field, TTCN3ListObject,
TTCN3Exception, and TTCN3ClassicType.

5.3 Test Adapter (TA)
One of the advantages of TTCN-3 is the availability of both standardized open
runtime and control interfaces (TRI and TCI) that enable an exchange of tool
components between different test tool providers. The execution of every TTCN-3
ATS against a SUT requires the use of a TTCN-3 compiler and runtime environment
but also the implementation of a SA according to the standardized TTCN-3 runtime
interface [TRI] definition, i.e. particular methods like triMap, triSend etc. have to be
implemented. We applied a Java-based TTCN-3 test tool environment. An additional
major issue for the adaptation of the SUT and the test system is the implementation of
a coder/decoder. It is possible to semi-automate this task by generating the codec. In
this case extra information required by the CD on particular message identifiers need
to be provided via extended type information using again the TTCN-3 “with”
statements. The Implemented EJB/Java TA consists in three different components
describe bellow:
− The Decoder provides a reconstruction mechanism, which is able to transform

TTCN-3 values to original JavaObjects.

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 13

− The Encoder provides a construction mechanism, which is able to transform
JavaObjects to expected TTCN-3 values.

− The Execution communicates directly with the SUTs. It is able to request execution
of tasks and the results are forwarded to the TTCN-3 test manager [TTman] via the
Encoder, the [TTman] will analyze the results and will set verdict according the
expected behaviour.

6 An example

The following example – a book search example – shows the content of a generated
TDOM so that we see how the transformer generates dynamically test cases for
testing a given EJB based application.

The EJB remote interface BookSession contains the functionality to be tested:

package de.fokus.ejbbook.session.interfaces;

public interface BookSession extends
 javax.ejb.EJBObject {
//function to test

 public de.fokus.ejbbook.view.BookView[]
 getAllBooks(java.lang.String author,
 java.lang.String title,
 java.lang.String isbn) throws
 java.rmi.RemoteException;
}

Like in the other TTCN-3 language mappings, the Java mapping uses a module
JavaAUX for the auxiliary type definitions:

module JavaAUX {
 type integer JavaByte (-2E7..2E7-1);
 type integer JavaShort (-2E15..2E15-1);
 type integer JavaInt (-2E31..2E31-1);
 type integer JavaLong (-2E63..2E63-1);

…
type record JavaObject {

universal charstring name
}

 type record StackTraceElement {
 universal charstring className,
 universal charstring methodName,
 JavaInt lineNumber
 }
 type record of StackTraceElement StackTrace;
 type charstring address;
 type charstring DEFAULT_EXCEPTION;

 . . . more declarations . . .
}

14 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

A TTCN-3 module specifically for the functionality to be tested is generated. The
module name de_fokus_ejbbook_session_interfaces is derived from the
Java package name:

module de_fokus_ejbbook_session_interfaces {
 import from JavaAUX all;//default declarations
 … //more module parameters declarations . . .

The exception is mapped to a reason together with the whole stack trace so as to
enable the analysis of the exception trace also during testing:

//mapping for the exception
type record java_rmi_RemoteException {
 universal charstring reason,
 StackTrace stackValue}

The data being used to characterize a book are defined in record structures:

//mapping for BookPK in BookValue
 type record de_fokus_ejbbook_entity_interfaces_BookPK {
 universal charstring iSBN}

//mapping for BookValue in BookView
 type record de_fokus_ejbbook_entity_interfaces_BookValue{
 universal charstring author,
 JavaInt editionNumber,
 universal charstring imageFile,
 universal charstring ISBN,
 universal charstring title,
 universal charstring titleName,
 JavaDouble price,
 de_fokus_ejbbook_entity_interfaces_BookPK primaryKey}

This type is the root type for the BookView function that is the target of the test:

//mapping for BookView as roottype for BookView[]
type record de_fokus_ejbbook_view_BookView {
 de_fokus_ejbbook_entity_interfaces_BookValue bookValue}

A list of books is stored in record of structures:

//mapping for BookView Array
type record of de_fokus_ejbbook_view_BookView
 de_fokus_ejbbook_view_BookView__1__ARRAY;

A BookSession_group group is generated to cover all definitions relating to the
BookSession interface such as the signature for retrieving books, the port for the
communication with the SUT and external functions for the creation and deletions of
beans:

//mapping for Interface/class as group
group BookSession_group {
//mapping for methode within group as signature

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 15

 signature
 BookSession__getAllBooks__String__String__String_signature
 (in universal charstring Par0,
 in universal charstring Par1,
 in universal charstring Par2) return
 de_fokus_ejbbook_view_BookView__1__ARRAY exception (
 DEFAULT_EXCEPTION, java_rmi_RemoteException);
 }

 … // template declarations . . .
//definition for the port declaration
type port BookSession_porttype procedure {
 out BookSession__getAllBooks__String__String__String_signature;
}
//definition for the component
type component de_fokus_ejbbook_session_interfaces__BookSession
 {port BookSession_porttype BookSession_proc_port}

//some external functions
external function createCMPBean(in charstring ejbName) return address;
external function deleteCMPBean(in address id);

Finally, a test case for getAllBooks is generated that invokes the procedure and
awaits a correct reply. The test data for the correct reply use default values. Whenever
an incorrect response is received such as an incorrect reply, an exception or no
response at all, a fail verdict will be assigned:

//generating the test case for the functionality
testcase BookSession__getAllBooks__String__String__String_testcase()
 runs on de_fokus_ejbbook_session_interfaces__BookSession
 system de_fokus_ejbbook_session_interfaces__BookSession {
 map (self: BookSession_proc_port,
 system: BookSession_proc_port);
 var address id :=
createCMPBean("de_fokus_ejbbook_session_interfaces__BookSession");
 var charstring exceptionMessage;
 var java_rmi_RemoteException java_rmi_RemoteExceptionMessage;
BookSession_proc_port.call(
 BookSession__getAllBooks__String__String__String_signature:
 BookSession__getAllBooks__String__String__ String_signature_template,
 5.0) to id {
 [] BookSession_proc_port.getreply (
 BookSession__getAllBooks__String__String__String_signature:

BookSession__getAllBooks__String__String__String_signature_template
 value de_fokus_ejbbook_view_BookView__1__ARRAY_template) {
 setverdict (pass);
 log ("SUCCESSFUL...");
 }
 [] BookSession_proc_port.getreply {
 setverdict (fail);
 log ("UNEXPECTED VALUE WAS RETURNED...");
 }
 [] BookSession_proc_port.catch (
 BookSession__getAllBooks__String__String__String_signature,
 java_rmi_RemoteException :?) -> value
 java_rmi_RemoteExceptionMessage {
 setverdict (fail);

16 Guy Collins Ndem1, Ina Schieferdecker1,2, Hajo Eichler1, Alain Vouffo-Feudjio1

 log (valueof (java_rmi_RemoteExceptionMessage.reason));
 }
[] BookSession_proc_port.catch (
 BookSession__getAllBooks__String__String__String_signature,
 DEFAULT_EXCEPTION: ?) -> value exceptionMessage {
 setverdict (fail);
 log (exceptionMessage);
 }
[] BookSession_proc_port.catch (timeout) {
 setverdict (fail);
 log ("TIMEOUT OCCURRED...");

}
 }
}

This concludes the example. Because of the absence of overloading, inheritance and
packaging in TTCN-3, the generated names in TTCN-3 tend to become long during
the flattening. However, flattening the names is the only way to prevent name clashes
within the generated TTCN-3. The mapping rules and the tools described beforehand
have been successfully used to test a more complex EJB book store case study
dynamically.

7 Summary

Our work was primarily focused on the definition of a set of Java-to-TTCN-3
mapping rules, in order to support an adequate testing of EJB based systems. The
defined mapping rules focus on the translation of type and structural information
contained in Java class and interface definitions.
Secondly, we implemented a three-component based system namely a SUTLoader for
loading the SUTs, a SUTParser to apply the transformation from Java to TTCN-3
using TDOM, and a generic Test Adapter to ensure a bi-directional translation
between Java and TTCN-3.
Future work will be to complete Java-to-TTCN-3 mapping rules, in order to test all
Java based applications.

Acknowledgments

We like to thank our colleagues Edzard Höfig, Yuri Glickmann, Jacob Wieland,
Dimitrios Apostolidis, Chaparadza Ranganai, Titus Ngwangwen, Laurette Lacmene,
and Maik Busch for their advices and support.

System tests for Enterprise JavaBeans and Java based Applications with TTCN-3 17

References

[1] ETSI ES 201 873-1 V2.2.1 (2003-02): TTCN-3 Core Language.

[2] ETSI ES 201 873-4 V2.2.1 (2003-02): TTCN-3 Operational Semantics.

[3] ETSI ES 201 873-5 V1.1.1 (2003-02): TTCN-3 Runtime Interface (TRI).

[4] ETSI ES 201 873-6 V1.1.1 (2003-07): TTCN-3 Control Interface (TCI).

[5] ETSI DTS/MTS-00080 V1.2.1 (2003-07): The IDL to TTCN-3 Mapping

[6] M. Ebner, A. Yin, and M. Li: Definition and Utilisation of OMG IDL to
TTCN-3 Mappings, In TESTING OF COMMUNICATING SYSTEMS XIV -
-- Application to Internet Technologies and Services, ed. I. Schieferdecker, H.
König and A. Wolisz. number 14, pp. 443--458, IFIP, Kluwer Academic
Publishers, ISBN 0-7923-7695-1, Berlin, Germany, March 2002

[7] OMG: JavaTM to IDL Language Mapping Specification v1.3 (2003-09)

[8] I. Schieferdecker, B. Stepien: Automated Testing of XML/SOAP based Web
Services, 13. Fachkonferenz der Gesellschaft für Informatik (GI) Fachgruppe
"Kommunikation in verteilten Systemen" (KiVS), Leipzig, 26.-28. Febr.
2003, Informatik Aktuell Springer 2003.

[9] M. Karki, A. Nyberg: Initial input for using C/C++ with TTCN-3, ETSI
MTS#40, Berlin, March 2005.

[10] Trancón Y Widemann, B., Lepper, M., and Wieland, J. 2003. Automatic
Construction of XML-Based Tools Seen as Meta-Programming. Automated
Software Engg. 10, 1 (Jan. 2003), 23-38.

[11] R. Monson-Haefel: Enterprise JavaBeans, 4th Edition, O’Reilly, 2004.

[12] Enterprise JavaBeans Technology. http://java.sun.com/produts/ejb

[13] Testing Technologies IST GmbH: TTworkbench (TTCN-3 tool set)
http://www.testingtech.de

